Exact formula for bond percolation on cliques
نویسندگان
چکیده
We present exact solutions for the size of giant connected component (GCC) graphs composed higher-order homogeneous cycles, including weak cycles and cliques, following bond percolation. use our theoretical result to find location percolation threshold model, providing analytical where possible. expect results derived here be useful a wide variety applications graph theory, epidemiology, lattice gas models as well fragmentation theory. also examine Erd\H{o}s-Gallai theorem necessary condition on graphicality configuration model networks comprising clique sub-graphs.
منابع مشابه
Exact bond percolation thresholds in two dimensions
Recent work in percolation has led to exact solutions for the site and bond critical thresholds of many new lattices. Here we show how these results can be extended to other classes of graphs, significantly increasing the number and variety of solved problems. Any graph that can be decomposed into a certain arrangement of triangles, which we call self-dual, gives a class of lattices whose perco...
متن کاملExact solution of bond percolation on small arbitrary graphs
We introduce a set of iterative equations that exactly solves the size distribution of components on small arbitrary graphs after the random removal of edges. We also demonstrate how these equations can be used to predict the distribution of the node partitions (i.e., the constrained distribution of the size of each component) in undirected graphs. Besides opening the way to the theoretical pre...
متن کاملSelf-dual Planar Hypergraphs and Exact Bond Percolation Thresholds
A generalized star-triangle transformation and a concept of triangle-duality have been introduced recently in the physics literature to predict exact percolation threshold values of several lattices. We investigate the mathematical conditions for the solution of bond percolation models, and identify an infinite class of lattice graphs for which exact bond percolation thresholds may be rigorousl...
متن کاملBond percolation on multiplex networks
We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a f...
متن کاملBond Percolation on Isoradial Graphs
In an investigation of percolation on isoradial graphs, we prove the criticality of canonical bond percolation on isoradial embeddings of planar graphs, thus extending celebrated earlier results for homogeneous and inhomogeneous square, triangular, and other lattices. This is achieved via the star–triangle transformation, by transporting the box-crossing property across the family of isoradial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physreve.104.024304